Global existence in nonlinear hyperbolic thermoelasticity with radial symmetry

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Stability and Global Existence in Thermoelasticity with Symmetry

First we prove an exponential decay result for solutions of the equations of linear, homogeneous, isotropic thermoelasticity in bounded regions in two or three space dimensions if the rotation of the displacement vanishes. As a consequence, we describe the decay in radially symmetrical situations, and in a cylinder in R3. Then we establish the global existence of solutions to the corresponding ...

متن کامل

Global Existence for Nonconvex Thermoelasticity

We prove global existence for a simplified model of one-dimensional thermoelasticity. The governing equations satisfy the balance of momentum and a modified energy balance. The application we wish to study by investigating this model are shapememory alloys. They are a prominent example of solids undergoing structural phase transitions. A characteristic feature of these materials is that several...

متن کامل

Local Existence and Blow up in Nonlinear Thermoelasticity with Second Sound

In this work we establish a local existence and a blow up result for a multidimensional nonlinear system of thermoelasticity with second sound.

متن کامل

Global Existence and Asymptotic Behavior of Solutions for Some Nonlinear Hyperbolic Equation

The initial boundary value problem for a class of hyperbolic equation with nonlinear dissipative term u tt − n i1 ∂/∂x i |∂u/∂x i | p−2 ∂u/∂x i a|u t | q−2 u t b|u| r−2 u in a bounded domain is studied. The existence of global solutions for this problem is proved by constructing a stable set in W 1,p 0 ΩΩ and show the asymptotic behavior of the global solutions through the use of an important l...

متن کامل

Scattering Theory for Radial Nonlinear Schrödinger Equations on Hyperbolic Space

We study the long time behavior of radial solutions to nonlinear Schrödinger equations on hyperbolic space. We show that the usual distinction between short range and long range nonlinearity is modified: the geometry of the hyperbolic space makes every power-like nonlinearity short range. The proofs rely on weighted Strichartz estimates, which imply Strichartz estimates for a broader family of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Quarterly of Applied Mathematics

سال: 2010

ISSN: 0033-569X,1552-4485

DOI: 10.1090/s0033-569x-2010-01190-1